
QtInstall Documentation
Version 1.8

the welcome page of the „Automatic Backup“ Installer, written by the same author.

in January, 2013

(C) Valentin Illich, Valentin.Illich@web.de

mailto:Valentin.Illich@web.de?subject=QtInstall%20Doku
mailto:Valentin.Illich@web.de?subject=QtInstall%20Doku

1. Table of Contents

2. Introduction
 4

3. How To Use QtInstall
 4
3.1. Creating a package
 5

3.2. Doing an installation
 5

3.2.1.Accessing system files during installation
 8

3.3. Doing a deinstallation
 8

3.4. Modifying an existing installation
 9

3.5. Major and minor updates
 10

4. Preparing Your Applications For QtInstall
 11
4.1. A Simple Example
 11

4.1.1.The QtInstall Definition File
 12

4.1.2.The installer in action
 14

5. The QtInstall Definition File
 15
5.1. The Package Header
 15

5.1.1.Specifying The Package
 15

5.1.2.Specifying The Package Items
 16

5.2. Specifying a File Item
 16

5.3. Specifying a Directory Item
 17

5.4. Specifying a QSettings Item
 17

5.5. Specifying a Symbolic Link Item
 18

5.6. Win Only: Specifying a Search Path for Dlls Item
 18

5.7. Specifying a Qt Project Item
 18

6. Using Setup Types and Components
 19

QtInstall Documentation
 2

7. Appendix
 19
7.1. Predefined Symbolic Paths
 19

7.2. QtInstall Package file format
 19

7.2.1.Package Header
 20

7.2.2.Datagram Headers
 21

7.2.3.Datagram Properties Description
 23

QtInstall Documentation
 3

1. Introduction
QtInstall is a general purpose installer / deinstaller tool which can be used to put any QT application onto
the hard disc of a computer. It provides following features:

1. copying as many files as you like in a given destination directory. When updating an existing
application, only newer files are copied.

2. creating as many QSettings entries as you like for your application

3. creating application start up links on the desktop or the auto start menu on Mac OS X Leopard or
Windows

4. creating special registry settings for finding shared libraries on windows - especially QT itself.

5. providing the end user with an intuitive and straightforward user interface.

QtInstall is based upon the QWizard class which gives the fundamental user interface for creating simple
installers. Since most installation processes require almost the same functionality like packing all
information in one single package file, providing the user with some standard dialogs like Welcome, License
(optional), Installation Progress, Completion and so on, QtInstall does these things around QWizard in a
simple and handy way. The user interface allows following steps:

• Welcome Page: This page introduces the product and explains some details.

• License Page (optional): This page displays a license text (e.g. the GPL) and allows continuing only after
accepting the license.

• Install Page: This page displays a progress bar which is filled up during installation.

• Complete Page: This page displays a summary of the installation progress. If some errors occurred during
installation, it allows the user to view an installation protocol.

QtInstall is self-containing, that means you may create and use (that means install) packages of your own
with the same application. QtInstall does not depend on any special libraries except the standard system
libraries which belong to the operating system. The package file format is a binary tagged format which is
fully documented in the Appendix.

QtInstall is built with a static version of QT, so it is independent of the underlying system - you will need just
a cross compile for a new target system. Version 1.0 is fully tested with Windows XP, Windows 7 (Trial), Mac
OS 10.5.x. All Pictures in this handbook are taken from a Mac OS system but will be similar according to
the target windows style.

2. How To Use QtInstall
QtInstall can be used in the simplest thinkable way. Since the Qt library which is used by QtInstall is
compiled in statically, all you need is the QtInstall application itself. It may be copied onto the target hard
disc with an entry in the start menu, or it can reside as a copy with each installation package you want to
provide.

This kind of operation allows you to easily provide the three most frequent types of installing or removing
your products from a destination computer. You may provide the QtInstall application itself and any of your
applications as package files for example as download link, or you may provide both (the installer itself and
your product package) on a media like CD or USB stick. The last variant is to embed the package of your

QtInstall Documentation
 4

product package inside the QtInstall application itself. This is the easiest way for deploying applications
since you have only one single file to provide. Nevertheless, if deploying more than one application, this
method has the disadvantage that you have an overhead of about 5 MBytes per application for that QT
library modules which are built in QtInstall.

2.1. Creating a package
QtInstall does following upon startup:

1. If QtInstall finds an embedded package it will always execute this package.

2. If no package is embedded in the installer, QtInstall will look after a package inside the current directory.

3. If no package is found, QtInstall will display a simple wizard which may be used to select a definition file
and preview and create packages built with it.

With the „Definition file...“ button the package definition file is selected. After this, the „Preview package...“
creates a temporary package and simulates an installation process. When again clicking on the Preview
button, the deinstallation is simulated.

„detailed logging“ will extend the logging during package creation and preview execution. This may be
useful if there are any problems with created product packages.

„Create package...“ will create the complete installation package, either as .qip package or as executable
standalone installer with an embedded package.

„Help“ will show this documentation.

2.2. Doing an installation
The four basic types of a product installation are

QtInstall Documentation
 5

1. Installing the product on an untouched system

2. Deinstalling the complete product

3. Repairing an existing installation - mainly if there were access right problems during (de)installation

4. Updating an existing installation with a new version

Installation of a product is started if QtInstall is executed with a package which does not exist on the target
computer. An installation process consists of following steps:

• Welcome screen with text out of the definition

• Licensing information for the product (optional, when given in definition file)

• Install screen with progress bar

• Complete page with final message

• On first execution on a target computer, QtInstall shows its own GPL license at the very beginning.

As an example, we show a complete turnaround of a product installation and deinstallation. We take the
automatic backup tool, written by the same author. First, the welcome page appears on the screen:

After this, the install page shows up:

QtInstall Documentation
 6

Finally, the complete page is shown:

Well, that‘s it.

QtInstall Documentation
 7

2.2.1. Accessing system files during installation
Often, you will need the access rights of an administrator for installing a product. QtInstall will recognize this
during the installation process, and guide you through an elevation process of your access rights:

After finishing the installer, you will get following question:

If you click on „Yes“, the system will be asked for privileged rights for accessing system directories. On
Windows and Mac OS, system dialog will appear where you must give an admin password. The installer is
now executed again with elevated rights.

After the repeated installation as administrator, you normally should do a „repair“ installation to get
references and links correctly created.

2.3. Doing a deinstallation
Deinstallation of an existing product is started when QtInstall is executed with the same product version
numbers which have been used at installation time. Deinstallation starts with the Modify page, where you
select „remove product from disk“:

QtInstall Documentation
 8

After deinstalling, again the complete page is shown.

Important: QtInstall will never remove files which are addressed inside the packages but have been
existing during installation time. This is done for security reasons, because QtInstall has to assume
that someone else needs these files, too. This feature allows installing products on the development
machine itself where e.g. the QT library resides in its original version - and of course may never be
deleted.

2.4. Modifying an existing installation
There are three kinds of installation modification:

1. The most often modification will be the product update of an existing installation. This is done
automatically if QtInstall recognizes that one of the given version numbers has been changed. Please
refer to the next section for this topic.

2. The deinstallation of a product is done by the modify process as described in the last section.

3. When during installation a repeated execution has been needed with elevated access rights, or when for
some reasons a file of the product got lost, the repair modification will be needed. This dialog is
automatically shown if the installer is executed again and no version change in the product is detected:

QtInstall Documentation
 9

3.1. Major and minor updates
QtInstall supports both methods, either a major update of a product or a minor update. Although there are
no differences in meaning between the common usage of these terms, here a short description of what they
mean:

• A minor update is normally done if just files or settings in the product have been changed and their
destination as to be updated. Another possibility is to have new files or settings inside the update
package which have not been installed yet. QtInstall selects this kind of update if only the minor version
string in the package has been changed.

• A major update has normally to be done if the file structure of the product has been changed or if files or
settings have been removed from the old to the new version. A good example would be an update where
the underlying version of the QT library has been changed, so that the file names of the shared libraries
have changed (please refer to the next chapter for this topic). In this case, the old product is automatically
removed with an uninstall process before the current product is installed again. QtInstall selects this kind
of update if the major and / or minor version string in the package has been changed.

In order to be able to track the version numbers for each product QtInstall creates a QSettings entry of its
own with the „Setup ID“ of the product package. Inside this entry all needed informations are stored as
string.

Important: QtInstall will never remove files which are addressed inside the packages but have been
existing during installation time. This is done for security reasons, because QtInstall has to assume
that someone else needs these files, too. This feature allows installing products on the development
machine itself where e.g. the QT library resides in its original version - and of course may never be
deleted.

QtInstall Documentation
 10

4. Preparing Your Applications For QtInstall
If you intend to build one or more applications with QT, you should be aware of the so called „DLLs hell“
problem. This means that different versions of your products need different versions of shared libraries
which they use, but all of them have the same file name and location on the target platform. QtInstall allows
you to avoid this if you‘re aware of this problem and respect following things:

• Under Windows, you will soon run into the „DLLs hell“ problem if yo want to support several applications
with separate installers. At some time, these applications will use different versions of the underlying QT
library. To avoid this problem, QtInstall gives you the ability to register separate search paths for each
application. Although this feature is documented by Microsoft since Windows XP, it is not well known to
the „normal“ QT developer. Therefore, you should set up the QT libraries with the configure option „-
prefix ...“ . This will ensure that the QT libraries will be searched always in the given prefix path for all of
your compiled applications. With a well defined naming convention of the prefix path, e.g. „c:\Qt\452“,
you may tell QtInstall to always copy the correct versions of the libraries. On the target system you may
set up an own directory for each version of QT, e.g. „c:\QtLib\452“. Don‘t forget to use the QtInstall
(Windows) special settings key for adding the correct search path for your application.

• Under the Mac OS situation is a little bit better since your binaries always search for shared libraries at the
same location where they were at compile time. But if you are not careful enough, it will be just the same
like on Windows. So you should at least set up QT with the configure option „-prefix ...“ and „-no-
framework“ option. This will ensure that the QT libraries will be searched always in the given prefix path
for all of your compiled applications. With a well defined naming convention of the prefix path, e.g. „/
Library/Qt/452“, you may tell QtInstall to always copy the correct versions of the libraries. On the target
system, you must use the same path as destination directory.

Of course, the same problem may occur with your own shared libraries (if you for example are distributing
more than one product), if you don‘t separate versions either in file name or in destination path, too.
Generally spoken, it is a good style to create a sub directory for all own applications, e.g. „VISolutions“.
Under this directory, you should place the QT libraries e.g. under „Qt/452“. On the same level, create a
further sub directory for each of your applications.

4.1. A Simple Example
As a simple example we will take a look at the VISolutions backup tool. This tool is a QT application which
shall get an installation process for Windows and Mac OS X. Let us assume that the tool sources reside in a
network path which may be accessed from Windows and Mac. The QT project file is situated in the root
directory. There are several subdirectories which contain additional resources:

backup/
! mac-release/
! ! backup.app/
! ! ! ...
! automatic-backup.pro
! ...
! win-release/
! ! backup.exe
! resources/
! ! backup.ico
! ! backup.pdf

QtInstall Documentation
 11

! distribute/
! ! backup-installation.csv
! ! welcome.html
! ! automatic-backup.qip

4.1.1. The QtInstall Definition File
Now we want to start with the definition file „backup-installation.csv“ for QtInstall. As of overview reasons,
in the documentation the cells are marked with a number which will be explained below in the text.

Major Setup ID Minor
(a) (b) (c)

a) Here we write the major version of the product, in this example „1“

b) This is a unique identifier around all thinkable QtInstall products on a target platform; we use the well
known UUID concept for providing this ID: „AFFDEA67-782D-45B4-AC7F-39EE2E2F2683“

c) This is the minor version of the product. Let us assume „5“

WindowTitle Welcome Text (File) Completion Text (File) Lic Text File Component(s)
1) 2) 3) 4) 5)

1) Here we write „VISolutions Automatic Backup V1.0“

2) The welcome text does not fit into a cell, so we choose the possibility to read it out of a file
„f:welcome.html“.

3) The completion text is quite short, so we put it into the cell with a line break:
„The software is now ready to use. Thank you for
installing VISolutions Automatic Backup!“

4) The tool doesn't have an extra license text, so we omit this cell.

5) The Components cell is left blank.

Now we continue with the package contents. First, we put a comment line inside the definition:

Item Type Source Path Destination Path Atrributes Component(s) Target
#

4.1.1.1. Packaging the application
The Target column may be used to put different source files into the package depending on the resulting
QtInstall package. We use this here in a common definition file for both Win and Mac. Now, we start with
the application:

d ../backup.app <APPDIR>/VISolutions/Automatic Backup/backup.app copySrc mac
f ../release/backup.exe <APPDIR>/VISolutions/Automatic Backup/backup.exe win32
f backup.ico <APPDIR>/backup.ico win32

As you can see, Mac applications are in real a directory which encapsulates all files needed for the Finder to
execute it. The „copySrc“ attribute means that the file attributes of the underlying UNIX kernel should be
taken from the sources (especially the „execute“ flag).

QtInstall Documentation
 12

On the opposite, the Win version is straightforward. Here, we additionally copy an icon file onto the target
machine which we may use later in the installation process.

4.1.1.2. Packaging the libraries
The Automatic backup is a QT application which needs the QtCore and QtGui library. Let us assume some
system paths where the libraries are installed on the development machine. Of course, each developer has
to insert his own settings here:

f /Library/Qt452/lib/libQtCore.4.5.2.dylib /Library/Qt452dynamic/lib/libQtCore.4.5.2.dylib/Library/Qt452dynamic/lib/libQtCore.4.5.2.dylib mac
f /Library/Qt452/lib/libQtGui.4.5.2.dylib /Library/Qt452dynamic/lib/libQtGui.4.5.2.dylib/Library/Qt452dynamic/lib/libQtGui.4.5.2.dylib mac
f c:/MinGW/bin/mingwm10.dll <APPDIR>/VISolutions/Qt452/mingwm10.dll<APPDIR>/VISolutions/Qt452/mingwm10.dll win32
f c:/Qt/4.5.2/bin/QtCore4.dll <APPDIR>/VISolutions/Qt452/QtCore4.dll<APPDIR>/VISolutions/Qt452/QtCore4.dll win32
f c:/Qt/4.5.2/bin/QtGui4.dll <APPDIR>/VISolutions/Qt452/QtGui4.dll win32

Please note that the Windows version also needs the mingwm10.dll which has to do with exception
handling in multithreading C++ projects compiled with MinGW for Windows. You will find many issues about
this obscure dependency in several newsgroups.

The Windows part of the package will not install the needed DLLs in the system path. Here we use the more
advanced version of defining an application specific search path for libraries. QtInstall has built in support
for this feature by providing a special settings syntax:

s <WINCURRENTVERS>\App Paths\backup.exe\Default <APPDIR>/VISolutions/Automatic Backup/backup.exe<APPDIR>/VISolutions/Automatic Backup/backup.exe win32
s <WINCURRENTVERS>\App Paths\backup.exe\Path <APPDIR>/VISolutions/Qt452/ win32

4.1.1.3. Packaging the default settings
Now we continue with additional steps for the installation process. The Automatic Backup tool uses some
QSetting entries for its configuration. One setting has to be set by the installer:

soa VISolutions.de Automatic Backup
s ConfigFile <HOMEDIR>/backup.cfg

With this method, the tool will always find its configuration even if it is installed on different user accounts.
Please keep attention to the „soa“ setting. It means something like „set organization and application name“
which may be defined on the QtCoreApplication class. They should be unique around the system and get
the appropriate entries here.

Last but not least we want to have startup links on the desktop and in the auto start:

lcs <APPDIR>/VISolutions/Automatic Backup/backup.app<APPDIR>/VISolutions/Automatic Backup/backup.app mac
lcs <APPDIR>/backup.ico <APPDIR>/VISolutions/Automatic Backup/backup.exe<APPDIR>/VISolutions/Automatic Backup/backup.exe win32
lcd <APPDIR>/VISolutions/Automatic Backup/backup.app<APPDIR>/VISolutions/Automatic Backup/backup.app mac
lcd <APPDIR>/backup.ico <APPDIR>/VISolutions/Automatic Backup/backup.exe<APPDIR>/VISolutions/Automatic Backup/backup.exe win32

4.1.1.4. The complete example
Here is the complete definition file with comments:

1;AFFDEA67-782D-45B4-AC7F-39EE2E2F2683;5
Window Title;Welcome Text (File);Completion Text (File);Lic Text File;Component(s);
VISolutions Backup V1.0;f:welcome.html;"The software is now ready to use. Thank you
for

QtInstall Documentation
 13

installing VISolutions Automatic Backup!";;;
Item Type;Source Path;Destination Path;Atrributes;Component(s);Target
#;;;;;
#;########## installing application itself ##########;;;;
#;;;;;
d;../backup.app;<APPDIR>/VISolutions/Automatic Backup/backup.app;copySrc;;mac
f;../release/backup.exe;<APPDIR>/VISolutions/Automatic Backup/backup.exe;;;win32
f;backup.ico;<APPDIR>/backup.ico;;;win32
soa;VISolutions.de;Automatic Backup;;;
s;ConfigFile;<HOMEDIR>/backup.cfg;;;
s;<WINCURRENTVERS>\App Paths\backup.exe\Default;<APPDIR>/VISolutions/Automatic Backup/
backup.exe;;;win32
s;<WINCURRENTVERS>\App Paths\backup.exe\Path;<APPDIR>/VISolutions/Qt452/;;;win32
#;;;;;
#;########## installing QT libraries ##########;;;;
#;;;;;
f;/Library/Qt452/lib/libQtCore.4.5.2.dylib;/Library/Qt452/lib/libQtCore.
4.5.2.dylib;;;mac
f;/Library/Qt452/lib/libQtGui.4.5.2.dylib;/Library/Qt452/lib/libQtGui.
4.5.2.dylib;;;mac
f;c:/MinGW/bin/mingwm10.dll;<APPDIR>/VISolutions/Qt452/mingwm10.dll;copySrc;;win32
f;c:/Qt/4.5.2/bin/QtCore4.dll;<APPDIR>/VISolutions/Qt452/QtCore4.dll;copySrc;;win32
f;c:/Qt/4.5.2/bin/QtGui4.dll;<APPDIR>/VISolutions/Qt452/QtGui4.dll;copySrc;;win32
#;;;;;
#;########## creating startup link ##########;;;;
lcs;;<APPDIR>/VISolutions/Automatic Backup/backup.app;;;mac
lcs;<APPDIR>/backup.ico;<APPDIR>/VISolutions/Automatic Backup/backup.exe;;;win32
lcd;;<APPDIR>/VISolutions/Automatic Backup/backup.app;;;mac
lcd;<APPDIR>/backup.ico;<APPDIR>/VISolutions/Automatic Backup/backup.exe;;;win32

And here is the welcome.html file:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/
html4/strict.dtd">
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <meta http-equiv="Content-Style-Type" content="text/css">
 <title></title>
</head>
<body>
<p>Congratulations for choosing the VISolutions Automatic Backup tool. This
tool will provide you an easy and simple way for doing backups of important
files automatically. Its main features are:</p>

 taking several paths as source directory
 selecting an individual interval for each source directory
 compressing the files during backup
 keeping the last few versions of each file

<p>The backup tool will be installed in the applications directory and an
auto start link for the current user will be set up. For further details
please refer to the documentation.</p>
</body>
</html>

4.1.2. The installer in action
left blank intentionally

QtInstall Documentation
 14

http://www.w3.org/TR/html4/strict.dtd
http://www.w3.org/TR/html4/strict.dtd
http://www.w3.org/TR/html4/strict.dtd
http://www.w3.org/TR/html4/strict.dtd

5. The QtInstall Definition File
All QtInstall package definitions are given as so called „csv“ files. This means the definition is given as table
with several rows an columns. Each row of the table is written as ASCII into a file with the new line
character at the end. Each column is separated by the others by the „;“ character. The csv format is very
common on all systems and can be edited very comfortable by special programs like „Microsoft Excel“ or
„Mac OS Numbers“. Each input line except the first 3 lines may begin with the numeric hash mark, „#“. All
lines beginning with this character will be treated as comments and will be ignored.

A B C D E F

this is a comment line

5.1. The Package Header
The first 3 lines of the definition file are the package header. The first line gives a short description of the
package specification cells. The second line defines the package itself. The third line of the package header
gives a description of the Item definitions. The following lines define the several package items.

A B C D E F
Major Version Setup ID Minor Version Sub Version

...

Window Title Welcome Text (File) Completion Text (File) Lic Text File Component(s)

...

Item Type Source Path Destination Path Attributes Component(s) Target

5.1.1. Specifying The Package
Major Version	 This cell contains the Major Version Number of the product. If this number is

increased during an update, the old version of the product will first be removed
completely.

Setup ID 	 This cell contains the UUID of this product package. This UUID may not change
during lifetime of the product

Minor Version	 This cell contains the Minor Version Number of the product. If this number is
increased during an update, changed files of the product are overwritten by the
installer automatically

Sub Version	 This cell contains the Sub Version Number

Window Title	 This cell contains the text which will be placed inside the wizard title bar.

Welcome Text (File)	 This cell contains the text which will be the welcome message of the package.
The text definition may contain the simple RTF tags which are understood by the
QT HTML formatter. Here also a file can be defined if the content is more than a
few words:

QtInstall Documentation
 15

	 welcome to my simple installer or

	 f:welcome.txt

Completion Text (File)	 This cell contains the text which will be the completion message after successful
installation. The text definition may contain the simple RTF tags which are
understood by the QT HTML formatter. Here also a file can be defined if the
content is more than a few words:

	 all is done! or

	 f:complete.html

Lic Text File	 If your application needs accepting a license, here the file is given which contains
the complete licensee text. The text definition may contain the simple RTF tags
which are understood by the QT HTML formatter.

Components
 This cell contains the definition of the Components of your package, if you want to
define them. For Details please refer to the „Using Setup Types and Components“
section.

5.1.2. Specifying The Package Items
Item Type	 This cell defines the kind of item which will be added to the package.

	 f or fr	 	 Specifying a File Item

	 d	 	 Specifying a Directory Item

	 p	 	 Specifying a Qt project Item

	 s or soa	 Specifying a QSettings Item

	 lcd or lcs	 Specifying a Symbolic Link Item

	 lrd or lrs	 Specifying a Symbolic Link Item

Source Path	 This cell defines the source path on the package creating machine.

Destination Path
 This cell defines the destination path on the target device. QtInstall understands
several symbolic names which will be replaced by the appropriate paths on the
destination machine. For details, please refer to the Appendix, „Predefined
Symbolic Paths“.

Attributes 	 This cell defines additional attributes for the given item. For details, please refer to
the item description.

Component(s)	 This cell defines the components to which the item belongs.

Target	 This cell allows a restriction to a special target type. As of version 1.0, the
following target types are recognized:

	 win32 and mac

5.2. Specifying a File Item
Item Type	 f or fc		 will install or update the given file on the target machine

	 fr	 	 will remove the given <Destination Path> file on the target machine.

QtInstall Documentation
 16

	 The fr option may be used to remove files which are generated by the application
on the target system, e.g. help files. So you can ensure that generated files always
will be updated by an updated application.

Source Path	 This cell defines the relative or full specified source file on the package creating
machine. Relative paths are given in respect to the path where the csv file resides.

Destination Path	 This cell defines the full qualified file path on the target device. QtInstall
understands several symbolic names which will be replaced by the appropriate
paths on the destination machine. You may also define an own directory structure
in the Destination Path. Upon installation process, QtInstall will automatically
check the directory tree on the target device and will create missing directories.

Attributes 	 This cell defines additional permissions for the given item.

	 empty cell	 the destination file will be generated with the system default
	 	 attributes.

	 CopySrc	 the destination file will get the same permissions as the source file.
	 	 Especially on non-WIndows systems, this may be needed.

 exec

 the destination file will get the „execute“ permission set. Especially

 on non-WIndows systems, this may be needed.

5.3. Specifying a Directory Item
A directory item will not be stored with an own type. Instead of this, the given directory is scanned
recursively and for each file found, a File Item will be added to the package.

Item Type	 d	 	 will install or update the given directory on the target machine

Source Path	 This cell defines the relative or full specified directory path on the package
creating machine. Relative paths are given in respect to the path where the csv file
resides.

Destination Path	 This cell defines the full qualified directory path on the target device. This will be
the root path for all directories and files contained inside the given directory.
QtInstall understands several symbolic names which will be replaced by the
appropriate paths on the destination machine.

Attributes 	 This cell is reserved for future use.

5.4. Specifying a QSettings Item
Item Type	 s	 	 will install or update the given QSettings key on the target machine

	 soa	 	 will set up the organization and application name on the target
	 	 device

Source Path
 This cell defines the QSettings key to be used. As mentioned in the QT
documentation, this may be a „hierarchical keys using the '/' character“.

Destination Path	 This cell defines the string value of the QSettings key. QtInstall understands
several symbolic names which will be replaced by the appropriate paths on the
destination machine.

Attributes 	 This cell is reserved for future use.

QtInstall Documentation
 17

5.5. Specifying a Symbolic Link Item
Item Type	 lcs or lcd	 will create a startup or desktop link to the given Destination Path on

	 	 the target machine.

	 lrs or lrd	 will remove the startup or desktop link to the given Destination Path
	 	 on the target machine.

Source Path	 Windows only: This cell defines the icon file on the target device which will be
used for the symbolic link.

Destination Path	 This cell defines the full qualified file path for the link destination file (typically an
application) on the target device. QtInstall understands several symbolic names
which will be replaced by the appropriate paths on the destination machine.
Please refer to the appendix.

 Mac only: To create a desktop or startup link to an application, you must specify
the „.app“ directory as destination, e.g. „<APPDIR>/backup.app“

Attributes 	 This cell is reserved for future use.

5.6. Win Only: Specifying a Search Path for Dlls Item
Item Type	 s	 	 will create a native Windows registry entry as soon as the symbolic

	 	 name <WINCURRENTVERS> is found in the Source Path.

Source Path
 This cell defines the native registry key. If the end of the key name is „Default“, the
Default key of the given registry key is set.

Destination Path	 This cell defines the contents of the given key. QtInstall understands several
symbolic names which will be replaced by the appropriate paths on the
destination machine.

Attributes 	 This cell is reserved for future use.

To set up a search path for an installed Qt application called „backup.exe“, you typically must define
following keys:

s <WINCURRENTVERS>\App Paths\backup.exe\Default <APPDIR>/backup.exe
s <WINCURRENTVERS>\App Paths\backup.exe\Path c:/test/452

As you can easily see from the definition, the Qt library DLLs will be searched inside the directory „c:/test/
452“.

5.7. Specifying a Qt Project Item
Item Type	 p	 	 will install or update all files of the given Qt project on the target

	 	 machine

Source Path	 This cell defines the relative or full specified file name of the Qt qmake project file.

Destination Path	 This cell defines the full qualified base directory on the target device. This will be
the root path for all directories and files specified in the project. QtInstall

QtInstall Documentation
 18

understands several symbolic names which will be replaced by the appropriate
paths on the destination machine.

Attributes 	 This cell is reserved for future use.

6. Using Setup Types and Components
reserved for future use.

7. Appendix

7.1. Predefined Symbolic Paths
<APPDIR>
 will be replaced by the directory where normally the applications are situated. On

Mac OS, this will be „/Applications“, on Windows the path given by the
environment variable %ProgramFiles%, typically „C:\Program Files“. Please be
aware that you will need admin rights in order to modify this directory.

<SYSDIR>
 will be replaced by the system directory. On Mac OS, this will be „/Library“, on
Windows the Windows root directory given by the environment variable
%SystemRoot%, typically „C:\Windows“. Please be aware that you will need
admin rights in order to modify this directory.

 QtInstall will hardly try to find out if it has the appropriate rights upon installation,
but this process may fail especially under Windows 7 where the „Virtual Store“
mechanism obscures what really is going on. The mechanism of QtInstall is to
recognize if one or more files should be copied into the <APPDIR> or <SYSDIR>
path. In this case, if errors occur during file copy, it tries to create a dynamic
library inside the <SYSDIR> path. If this fails, the complete page of the install
wizard will recommend to repeat the installation with admin rights.

<HOMEDIR>
 will be replaced by the users home directory. On Mac OS, this will be the %HOME
% directory, typically „/Users/<username>“. On Windows, this will be the
%USERPROFILE% directory, typically „C:\Documents and Settings\<username>“

<APPDATADIR>
 will be replaced by the directory reserved for extra data of applications. On Mac
OS, this will be „/Library/Application Support“, on Windows XP the %APPDATA%
directory.

7.2. QtInstall Package file format
The QtInstall Package format is defined as binary format with a header, followed by several datagrams.
Each datagram has a standard header with its type and size information so that a unknown datagram
always may be skipped. The file ending is defined as „.cab“.

QtInstall Documentation
 19

+-----------------------+--------------+--------------+-----+--------------+
| package header | data | <datagram 1> | <datagram 2> | ... | <datagram n> |
+-----------------------+--------------+--------------+-----+--------------+

The package header contains a magic word to be sure that the given file really is a QtInstall package,
followed by the version number of the file format, the number of datagrams inside the package. At the end
of the package header comes the detailed description of the package which contains the complete
informations out of the definition file.

All integer values are defined in the Intel notation.

7.2.1. Package Header

struct cabinetMagic
{
 unsigned int magic;
 unsigned int version;
 unsigned int nelements;
 unsigned int descrLength;
};

magic
 is the magic word which declares the file as QtInstall package. The value is ,VISL‘

version	 is the file format version: <main>*1000000 + <sub>*1000 + <minor>

nelements	 number of datagrams inside the package

descrLength	 length of the following data block with the complete description

Now following the Package Header Data:

data
 is a String object which contains the summary of all package properties. The
properties are separated by the keyword „@propval@“. The position inside the
data string has following meaning:

property index property content

0 window title

1 welcome text (may be HTML)

2 completion text (may be HTML)

3 license text (may be HTML)

4 components definition

5 Setup ID

6 Setup major version (String)

7 Setup minor version (String)

QtInstall Documentation
 20

7.2.2. Datagram Headers

struct cabinetHeader
{
 cabinetDatagramID ID;
 unsigned int attributes;
 unsigned int dataLength;
};

ID	 is the numeric ID of the following datagram. The IDs are defined as following:

datagram ID datagram type

0 file datagram

1 settings datagram

2 links datagram

attributes	 is a combination of several bit flags which differ from datagram type to datagram
type.

	 Bit mask definition for File Datagrams:

! ! ! ! #define useFilePermissions 0x00000001
! ! ! ! #define executablePermission 0x00000002
! ! ! ! #define removeDestination 0x00000004

	 Bit mask definition for QSettings Datagrams:

! ! ! ! #define settingsAppAndOrgName 0x00000001
! ! ! ! #define settingsRemoveSettings 0x00000002

dataLength	 is the length of the following datagram data (including sub header)

7.2.2.1. File Datagram Sub Header / Data

struct fileDataHeader
{
 unsigned int destinationLength;
 unsigned int dataLength;
 unsigned int propertiesLength;
 unsigned int lastModified;
 unsigned int filePermissions;
};

destinationLength	 is the length of the destination path definition which follows in the data block

dataLength	 is the length of the file contents binary data

QtInstall Documentation
 21

propertiesLength
 is the length of the property list string data. For a description of these please refer
to „Datagram Properties Description“.

lastModified	 is the time stamp of the modification date of the source file in seconds since 1st of
January, 1970, 00:00

filePermissions	 is the bit mask of the filePermissions which the destination should get. The bit
mask is defined by QT.

Now following the File Datagram Data:

dstFileName	 is the data block for the destination path string

dstProperties
 is the data block for the property list string. For a description of these please refer
to „Datagram Properties Description“.

dstBinData	 is the data block for the binary file data

8.Settings Datagram Sub Header / Data

struct settingsDataHeader
{
 unsigned int keyLength;
 unsigned int valueLength;
 unsigned int propertiesLength;
};

keyLength	 is the length of the QSettings key string

valueLength	 is the length of the QSettings value string

propertiesLength
 is the length of the property list string data. For a description of these please refer
to „Datagram Properties Description“.

Now following the Settings Datagram Data:

keyName	 is the data block for the QSettings key string

keyProperties
 is the data block for the property list string. For a description of these please refer
to „Datagram Properties Description“.

keyValue	 is the data block for the QSettings value string

9.Links Datagram Sub Header / Data

struct linksDataHeader
{
 unsigned int targetLength;
 unsigned int iconFileLength;
 unsigned int propertiesLength;
 unsigned int operation;
};

QtInstall Documentation
 22

targetLength	 is the length of the target file name

iconFileLength	 is the length of the icon file name

propertiesLength
 is the length of the property list string data. For a description of these please refer
to „Datagram Properties Description“.

operation	 is the desired link operation on the target device. The operations are:

op code operation

0 create an auto start link for the current user

1 remove the auto start link for the current user

2 create a desktop link for the current user

3 remove the desktop link for the current user

Now following the Links Datagram Data:

targetFile	 is the data block for the target file name string

linkProperties
 is the data block for the property list string. For a description of these please refer
to „Datagram Properties Description“.

targetIconfile	 is the data block for the icon file name string

9.1.1. Datagram Properties Description
To be defined in the future

QtInstall Documentation
 23

